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A method is proposed for calculating the partition function Z(r) of a chain on a diamond-type lattice on 
the basis of the Monte Carlo algorithm for simulating a chain 'from point to point' with allowance made 
for the statistical weight factor of the conformation. The free energy is calculated for chains with the 
parameters of polyethylene, polytetrafluoroethylene, polyoxymethylene and poly(ethylene oxide), within a 
wide range of elongations for various chain lengths and temperatures. Allowance is made for the effect of 
the limiting planes on the free energy, which is characteristic for chains in amorphous regions of 
semicrystalline polymers. The accuracy of the proposed method is shown to rise with increasing elongations 
and decreasing chain lengths. A simple analytical approximation of the free chain energy is proposed for 
all the polymers examined. 
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I N T R O D U C T I O N  

The free conformation energy of chain molecules within 
wide ranges of lengths and elongations needs to be 
calculated in various fields of theoretical physics of 
polymers 1-a. The free conformation energy of chains 
governs, to a substantial extent, the process of 
deformation and drawing of polymers 4'5, the thermo- 
kinetics of stress-induced crystallization, and the 
parameters of semicrystalline polymer structure 6'7. 

The free energy of an elongated chain can be found if 
the end-to-end vector distribution W(r) is known 1. The 
function W(r) has been studied theoretically in numerous 
works 1'8-16, but the applicability of the expressions 
obtained for W(r) is restricted to high values of chain 
length and/or  to low elongations. In two publications L a 
the value of W(r) is expressed as a series containing its 
even moments. The expression for the density of the 
distribution W(r) obtained in ref. 9 contains both even 
and odd moments. This fact appears to reduce somewhat 
the number of highest moments necessary for calculating 
W(r) within acceptable accuracy. However, the matrix 
method cannot be used as yet to calculate moments 
higher than the fourth moment, while the Monte Carlo 
method 9'~4 cannot be used in practice if the number of 
chain units exceeds a few dozens. 

In calculating the free energy of a polymer chain in 
amorphous regions of semicrystalline polymers account 
must be taken of the effect of the limiting surfaces of 
crystallites. In refs. 17-19 attempts have been made to 
take these limitations into account when calculating the 
chain entropy on a cubic lattice. However, no functional 
relationship between the entropy and the chain 
elongation have been obtained there and, in addition, 
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the model used bore too remote resemblance to a real 
macromolecule. 

The aim of the present work is to calculate and 
analytically approximate the free conformation energy of 
polymer chains within wide ranges of their lengths and 
elongations with allowance made for the effect of the 
limiting surfaces. 

M E T H O D  OF CALCULATION 

The free conformation energy of a macromolecule with 
fixed ends has been calculated using the algorithm for 
simulating a chain 'from point to point'  by the Monte 
Carlo method 2° with allowance made for the statistical 
weight of the conformation 21. A polymer molecule has 
been simulated as a series of random walks within a 
body-centred cubic (b.c.c.) lattice, where each time, out 
of eight feasible directions of a step, the three directions 
corresponding to the trans and gauche conformers of the 
chain molecule and having the statistical weights: 

Pt = e x p ( -  EZ/RT) 

have been allowed. In the above-mentioned formula E z 
are energies of the conformers of a given polymer 1'22 
(see Table 1). 

In the ease where all directions on a b.c.c, lattice are 
allowed, according to ref. 20 the probability of selecting 
a step with vector ~i ~ on condition of arriving after n steps 
at a prescribed point spaced Ar from the current point 
is equal to: 

w.(fil) = f i  n-Arj6} 
j= ~ 2n 
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Considering the above-mentioned restrictions on the 
allowed conformations, this probability is equal t023: 

£v.(~)l) = w.(6')Pt (1) 
q. 

where 
3 

q .=  ~ w.(St)P, (2) 
/=1  

is the Rosenbluth factor of a chain unit. The probability 
W~ of occurrence of the ith chain conformation with the 
given simulation method and its statistical weight Q~ are 
equal t o  21,2 3 : 

N N 

W/= I-I ~iw. and Qi = l-[q~ (3) 
n = l  n = l  

It can readily be seen from (1)-(3) that: 

w~O , = ( I /F)  e x p ( -  E'/RT) 

where E ~ is the energy of the ith conformation of the 
entire chain; and F is the total number of conformations 
on a b.c.c, lattice for a chain with ends space r apart, 
which is known to be: 

a N! 
F = j I-[ 1 .= [½(N--rj)]![½(N +rj)]! 

Assume that there are Ft. conformations of statistical 
weight Qm. Obviously, the probability of occurrence of 
any of the conformations is: 

Then: 

Pm = 2 Wi=FQm 2 exp - 
i=1 i=X 

r,~ ( E i )  Z(r) 
- P 1 - R T  F Q:~Qm m:~ ~ ,~1 exp : 

where Z(r) is the partition function of the chain with 
fixed ends. The free conformation energy of such a 
chain is: 

F = - R Tln(F(~) (4) 

Chains of lengths N ranging from 6 to 5000 units have 
been examined. An ensemble of S chains of the same 
length with a preset distance between its ends has been 
simulated. In the case of short chains S = ( 3 - 5 ) x  103, 
while in the case of long chains (N = 1000-5000), S = 200. 
The mean statistical weight of the conformation has been 
estimated to be equal to: 

S 

(2=S -~ F, Q, 
i=1 

with the mean-square error of the estimate being equal to: 

i f (Q) = [S- 1D(Q) ] l /2  (5) 

where D(Q) is the statistical weight variance: 

O(Q)~S -1 Q~- s -1 g, 
i=1 i=1 

The absolute error in finding the free 
considering (4) and (5), equal to: 

energy is, 

AF ~ RTQ- I[S-1D(Q)] 1/2 

The reliability of estimating the error in the free energy 
depends on the accuracy with which D(Q) has been found. 
The spread of the Qi values within the ensemble is very 
large. For example, - 36 ~< lg Qi ~< - 18 for zero end-to- 
end distance r in a 30-unit chain and - 675 ~< lg Qi ~< - 648 
in a 1000-unit chain. As the elongation increases, the 
spread of the values of Qi decreases sharply. However, 
in any case several peak values of Q~ make a significant 
contribution in the estimation of Q and D(Q). It is evident 
that, the greater the ratio: 

S 

Neff=Qma~x ~ Qi 
i=1 

the greater is the reliability of the estimates. Since: 
S S 

i=1 i=1 

it can be written that: 

QmaxNeffS ( 1 - S  Neff)<QmaxNeffS D(Q)< 2 - 1  - 1  2 - 1  

Hence: 
AF < R TS~ff ~/2 (6) 

In the present calculations the value of Nef f has been 
varied from a few units in the case of long chains to a 
few dozens and hundreds in the case of medium and short 
chains. The value of Nef f increases with increasing degree 
of chain elongation, i.e. the reliability of the calculation 
increases with increasing elongation and decreasing chain 
length. This fact offers a fundamental advantage of the 
present calculation method as compared with the 
analytical and numerical techniques used elsewhere 1' 8-19. 

As is normally assumed 24, the large spread of the 
statistical weights Qi in the Rosenbluth method 2x does 
not allow an ensemble-averaged value of one or another 
physical parameter: ( )is 

£ =  Q, Y. g,x, 
i=1 i=1 

to be estimated with low error. Indeed, it can be easily 
shown that the relative mean-square error is: 

a(X)/X ,,~ N ~  / 2 >> S-  1/2 

However, the free energy is proportional to the logarithm 
of Q, which means that, according to (6), its absolute 
error is approximately equal to N~ff ~/2 and the resultant 
relative error proves to be quite satisfactory. 

The computer simulation has been made for chains 
with ends fixed at two sites (a segment in a network), 
fixed on two parallel planes (tie chains in the amorphous 
interlayer of a fibril) and fixed on a single plane (loops 
in an amorphous region) (see Figure 1). 

a b e 
Figure 1 (a) Chain fixed at two sites (segment in network).  (b) Chain 
with ends fixed on two planes (chain in a m o r p h o u s  region of 
semicrystalline polymer).  (c) Chain with ends fixed on a single plane 
(loop on surface of crystallite) 
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Table 1 Parameters of investigated polymers 

Polymer Tm25 Tg26 EG 1 E* 1 Co O 1.22 
(K) (K) (J/mol CH2) (J/mol CH2) (C, =r2/nl 2) 

PE -CH2-CH 2- 414 203 2100 8380 6.87 at 413 K 
PTFE ~ F 2 - C F  2- 600 123 4620 oo 11.00 at 600 K = 
POM ~ ) - C H  2- 470 213 -6300  7650 7.50 at 363 K 
PEO - O - C H 2 - C H  2- 342 213 -1800  (3800) 1500 (oo) 4.50 at 313 K 

= Ref. 22 presents the results of calculation of C® for PTFE chains for models with three and four rotational isomers. For the first model C = 11 __+ 2, 
for the second model C = 30 + 15. Only the model with three rotational isomers is consistent with the diamond-type lattice 

e~ "1- 
0 
-6 
E 

L u_ 

-2 

E l o n g a t i o n ,  x=r /L  T e m p e r a t u r e ,  T ( K )  

333 373 393  413  433  
0 ,, , , , • , 

b 

- 1 . 0  

- 2 . 0  

Figure 2 Free conformation energy of chains fixed at sites as a function of the elongation x = r/L, at 
T=413 K. The number of chain units N = 2 0  (A), 30 (B), 50 (C), 100 (D), 300 (E), 1000 (F) and 5000 
(G). For comparison, the figure also presents other results: ref. 1 for N=50 (A), 100 (&), 300 (v) and 
1000 (T); ref. 10 for N=100 (O) and 5000 (0); ref. 11 for N=I00 fin) and 1000 (11); ref. 12 for N=20 
(+) and 30 ( x ). (b) Variations of minimum free energies Fm~, with temperature for the same chains as in (a) 

Several polymers with different conformation proper- 
ties, namely polyethylene (PE), polytetrafluoroethylene 
(PTFE), polyoxymethylene (POM) and poly(ethylene 
oxide) (PEO), have been selected for examination. The 
chains of these polymers may be simulated, with minor 
distortions, by random walks in a diamond-type lattice. 
Table 1 shows the energies Eo of gauche ' _ '  conformers 
relative to the trans conformer energies, as well as the 
additional energies E* of crossed sequence of gauche 
conformers • • • G ÷ G - .  • • of various polymers. The 
infinite values of E* correspond to forbidden crossed 
sequences of the • • • G ÷ G - .  • • type. The difference in the 
conformation properties appears to be caused by 
differences in the polymer energies EG and E*. 

RESULTS OF M O N T E  CARLO 
CALCULATIONS 

Figure 2a shows the variation of the free energy for PE 
chains with ends fixed at sites as a function of the 
elongation x = r/L at a temperature of 413 K (r = end-to- 
end distance, L =contour  length of the chain). Within 
the region of small elongations the results shown in Figure 
2a may be compared with the results obtained 
elsewhere 1'~°-12. The results presented in ref. 1 by Flory 

permit approximate calculations of the absolute value of 
the free conformation energy of a PE chain allowing for 
the fourth moment of the distribution density W(r). The 
values of the free energies at x = 0 obtained in the present 
paper differ from those calculated with formula (8.76) of 
ref. 1 by about 20% in the case of a chain with N = 50, 
whereas both calculations yield the same results in the 
case of a chain with N--1000. It should be noted that 
the accuracy with which the free energy is calculated with 
formula (8.76) of ref. 1 appears to fall rapidly with 
decreasing number of chain units because of a greater 
contribution from unaccounted higher moments of the 
distribution density. The results obtained 1°-12 enable the 
calculation of only the relative values of the free energy. 
In Figure 2a these values are calculated from the absolute 
values of the free energy obtained by us at x = 0. 

Thus, within the region of long chains and small 
elongations, which is least favourable for our method, 
the results obtained in refs. 1, 10-12 are in good 
agreement with our results. This offers good reason to 
expect that within the region of large elongations and 
short chains, where, as noted above, the calculation 
accuracy is higher, the results obtained by us are quite 
reliable. 

The results of the calculations have shown that the 
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values: 

e(x, N)=F(x; N, T)lFmi~(N, T)I-1 

are practically independent of temperature in the 
examined interval of 333 to 433 K for chains having more 
than 20 chain units. Here, F(x; N, T) is the free energy 
of the chain as a function of elongation x = r/L, number 
of chain units N and temperature T, and Fmi,(N, T) is 
the minimum value of F(x; N, T) at constant N and T. 
Within a wider temperature interval, e is found to be 
affected weakly by temperature (see Figure 5). In such a 
case the following approximation,  accurate within about  
3% at all N~>20 and 0~<x< 1, may be suggested: 

e(x, N) = ~ + fl exp(yx 2) (7) 

where ? = 2.348 + 83.5N- L363, and ct and fl are obtained 
from the conditions e(0, N ) = - 1 ,  e(1, N ) = 0  and are 
equal to: 

f l - l = e x p ( ~ ) - l ,  c ¢ = - l - - f l  

The variation of Fmi . with N and T (see Figure 2b) can 
be described by the following empirical formula: 

Fmi,(N, T ) =  1192 - (7.1625 - 4 0 N - ° ' a 9 ) ( T +  50) 
(J/mol CH2) 

Of course, the values of Emin(N , T) can be calculated 
using the expressions for the end-to-end vector 
distribution W(r) and for the unrestricted partition 
function Z of the chain presented in ref. 1. As is noted 
above, however, the error in calculating Fmi,(N, T) 
increases greatly in the case of short chains, and at 
elongations r(r2)ol12>~l.6 the expression for W(r) is 
completely incorrect, thereby certainly affecting the value 
of W(r--0) through the normalization 1 --S~ 4gr2 W(r) dr 
and, consequently, the value of the minimum free energy 
fmin(N , T). 

Figure 3 presents the results of the calculations 
performed for PE chains with ends fixed on two parallel 
planes (Figure lb). Chains of lengths varying within 
30 ~< N ~< 2000 have been examined in the temperature 

t~ 
-1- 
(J 

-5 
E 

"3 _~ .o 

o 

L 
It- 

- 2 . 0  

E l o n g a t i o n ,  x = r /L  
0 0 .5  1 .0  

Figure 3 Free conformation energy of chains fixed on two planes as 
a function of elongation x=r/L, at T=413 K. The number of chain 
units N = 30 (A), 50 (B), 100 (C), 300 (D), 1000 (E) and 2000 (F) 
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Figure 4 Free conformation energy of chains fixed to a single plane 
as a function of elongation x=r/L, at T=413 K. (Curves A-F are the 
same as in Figure 2a.) 

interval of 333 to 413 K. Except for the region of weak 
elongations, where the chain is subjected to strong com- 
pression by the limiting planes, the curves representing 
the free energy F(x; N, T) as a function of elongation x, 
number of chain units N and temperature T coincide 
with similar curves for the chains fixed at sites. It is not 
difficult to indicate the region where this approximation 
is valid: the distance between the planes should be greater 
than the mean-square end-to-end distance for unperturbed 
chain r >  (r2)~/2; equality of the distances corresponds 
to the minimum of the free energy (see Figure 3). 

The results presented correspond to the case where the 
projections of the points in which the chain ends are fixed 
onto the plane of crystallites coincide, i.e. the end-to-end 
vector of the chain is perpendicular to the planes. 
Additional examination has show that at inclination 
angles of up to 40 ° the effect of the angle of end-to-end 
vector inclination to the planes on the free energy may 
be neglected. 

Figure 4 shows the results obtained for chains fixed on 
one plane at T = 4 1 3  K. PE chains of 20~<N~< 1000 have 
been examined within the interval 333 to 413 K. In this 
case the function: 

e(x, N)=F(x; N, T)IFmi,(N, T)I-  1 

can also be approximated by expression (7), but the least 
free energies here are higher than in the case of chains 
fixed at sites. For  Fmi . the following empirical formula 
may be proposed: 

Fmi,(N, T) = 1035 - (7.1625 - 36N-  ° '79)(T+ 28) 

From Figure 5 it is seen that the reduced free energies 
e(x, N) for various types of chains with N varying from 
30 to 5000 differ from one another by not more than 
6 -7%.  If we limit ourselves to such an accuracy, the 
expression (7) approximating e(x, N) may be simplified 
if the effect of N can be neglected: 

e(X) = Ot + fl exp(yo x2) (8) 

?0=2.354,  fl- t =exp(yo)--  1, ~ =  - -1 - - f l  
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E l o n g a t i o n ,  x = r / L  

0 .5  1.0 
g 

m I •o 
t xv 4-~ 

v" : 
m* v 

0 mA'~i I +v • 

& i~ *. 2 

D~ 
-I o 

X 4v'~, a• avl~ 
T : 9" +t" ~.o ,,~ 

, •go ,~ 

x 4bo 

\ I 

a v •  ~ 

Figure 5 Reduced free energy of chains e(x, N) as a function of 
elongation (at various N and T) for four investigated model chains 
with the parameters of PE, PTFE, POM and PEO. Chains with ends 
fixed on two planes: N = 1000 (O) and 100 (O). Chains with ends fixed 
to a single plane: N=IO00 (t-l), 100 (I), 30 (+) and 20 (x). Chains 
fixed at sites: N = 1000 (/x), 100 (*), 30 (~7) and 20 (T). The temperature 
intervals are 273-470 K (POM), 273-342 K (PEO), 333-413 K (PE) 
and 273-600 K (PTFE). In the cases where curves e(x, N) do not 
coincide at different temperatures, the higher values of e(x,N) 
correspond to lower temperatures 

In finding the value of Yo ensuring the best approximation 
the chains with N/> 1000 have been examined. 

This approximation possesses one remarkable property: 
at small values of x it coincides with the reduced free 
conformation energy of a long equivalent Gaussian chain. 
For  the Gaussian chainX-3: 

3 r 2 
F(r) = F(O) + ~ NI  2 

where I. is the length and n is the number of equivalent 
segments. Considering that: 

nl. = N a  sin 0 

nl 2 = C N N a  2 

where 20 is the valence angle of PE carbon chain, CN is 
the characteristic ratio for an N-unit chain and having 
in mind that for a long chain: 

Fo= -- g T ln Zo 

where Z o is the partition function of the unperturbed 
rotational isomeric model of the chain (formula (3.40) 
from ref. 1), we shall obtain for the long Gaussian 

equivalent chain: 

3 N sin 2 0 
EG = -- 1 + -  x 2 (9) 

2 Coo In Zo 

For  small values of x expression (9) shall be valid for a 
sufficiently long chain of any polymer. Equating (8) and 
(9) and expanding the exponent in (8) into a series to a 
second-order infinitesimal gives: 

Yo 3 N sin 2 0 
- ( 1 0 )  

exp(yo)-- 1 2 Coo In Zo 

If we take the values of O, Coo and Zo for the rotational 
isomeric model of the PE chain with correlated rotation 
(formula (3.40) from ref. 1) it is not difficult to check that 
the solution of this equation is ~o = 2.38, i.e. a value nearly 
equal to that obtained from the approximate Monte 
Carlo calculation results. 

Fioure 5 represents the results of Monte Carlo 
calculations for chains on a diamond lattice with the 
parameters of POM,  PEO and PTFE for various N and 
T and under various constraints. Just as in the case with 
PE the type of constraint imposed on the chain (fixed 
end-to-end distance, fixing the ends of the chain on a 
plane or on two parallel planes spaced r >/(r2)~ / 2 apart)  
has no noticeable effect on the reduced free energy e(x, N) .  
In the case of loops (see Figure 1) the minimum free 
energies are somewhat higher than in the case of chains 
with fixed ends. Limiting ourselves to the accuracy of 
6-7  %, within the intervals of temperature of 400 to 600 K 
for PTFE,  370 to 470 K for P O M  and 273 to 342 K for 
PEO,  the effect of N and T on the reduced free energy 
can be neglected and the latter can be considered to be 
a function of elongation x alone. 

Approximation (8) for e(x)  can be applied as well to 
chains with the parameters of PTFE,  P O M  and PEO,  
with the results of the approximation being closest to the 
results of the Monte Carlo calculations at Yo, which are 
essentially the solution of equation (10) with correspond- 
ing parameters Coo and Zo. 

The values of Yo obtained for all the polymers that 
have been examined are tabulated in Table 2. 

As is seen from Figure 6, expression (8) for e(x)  yields 
results much closer to the results of the Monte Carlo 
calculations than formula (9) and the expression for the 
reduced conformational free energy e(x) of the equivalent 
freely jointed chains obtained on the basis of £#* 
distribution 1: 

1 f xNln 
- -  f ( r )  dr 

e ~ . ( x )  = - 1 -~ R T l n  Zo ~ o 

() . . q o ,  dr '  ( l l )  f ( r }  = r' 
N l .  

r 
X ~ - -  

Nl. 

Table 2 Parameters of approximations (8) and (9) 

Polymer 70 Y'o 7'3 

PE 2.354 0.589 1.011 
PTFE 2.212 0.272 1.021 
POM 1.728 0.098 0.581 
PEO 2.092 5.005 -- 2.072 
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E l o n  a t i o n ,  x = r / L  
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F i g u r e  6 Reduced free energy e(x) as a function of elongation x: (0) obtained in simulation (correspond 
to Figure 5); (111) calculated from formula (8); (,t) calculated from formula (8a); curve G, calculated from 
formula (9); curve L, calculated from formula (11) 

However, it should be noted that, whereas in the cases 
of PE and PTFE,  approximation (8) may be regarded 
as quite satisfactory, in the case of PEO and particularly 
in the case of P OM it shows systematic deviations from 
the results of the Monte Carlo calculations in the range 
of medium values of elongation x. 

In order to eliminate these deviations one more 
member has been added in formula (8): 

e(x) = o~' + fl' exp(~x  2 + y~x 3) 
(8a) 

(fl')- 1 =exp(y~ +7~)-- 1, c~'= --1--fl' 

The requirement of the correct asymptotic approach of 
~(x) for long chains at x ~ 0 expression (9) gives the 
following equation: 

y~ 3 N sin 2 0 
- (10a) 

exp(~  + y~) -  1 2 Coo In Z o 

from which both of the parameters 7~ and y~ can no 
longer be determined. The second equation necessary for 

this determination may be obtained from the requirement 
of a minimum of the sum of squares of the deviations of 
approximation (8a) for the results of the Monte Carlo 
calculation. The coefficients thus obtained (y~ and y~) are 
presented in Table 2 and the corresponding curves e(x) 
are shown in Figure 6. 

Thus, expressions (8) and (8a) well approximate the 
results of the Monte Carlo calculations within a wide 
range of elongations, chain lengths and temperatures. 
However, in the cases of very short chains and/or  lower 
temperatures, function e(x) shows great changes in shape. 
Figure 7 shows functions e(x, N) for certain short chains 
of various polymers. It is clearly seen that the free energy 
minimum shifts from the point x = 0 into the region of 
medium elongation. A similar result has been obtained 
for PE chains in ref. 12. This fact means actually that 
the best way for the subchain is to straighten out. This 
conclusion looks quite natural for PE, PTFE and PEO 
whose gauche conformer energy is higher than the trans 
conformer energy. The shorter the chain, the higher is 
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Figure 7 Reduced free energy e(x, N) of short chains as a function of 
elongation x=r/L: (11) PE, N=16, T=203 K; (E]) PE, 16,413; (0) 
PTFE, 10,600; (1!') PEO, 12,342; ( + ) POM, 6,470; ( x ) POM, 10,213 

the t empera tu re  at  which the shift of  a m i n i m u m  of  e(x, N )  
is observed.  In  chains longer  than  N = 2 0  units in P E  
and P E O  and  N =  100 units in P T F E  this effect is not  
observed even at  the glass t empera ture .  In  the case of  
P O M ,  where the mos t  advan tageous  is the gauche 
confo rmat ion  (see Table 1), even at the glass t empera tu re  
the min imum shifts only for very shor t  chain  with N = 10 
chain units. At  higher  t empera tu res  the a p p r o x i m a t i o n  
(8a) is val id for chains with N i> 6. 

The analyt ica l  expressions ob ta ined  for the free 
energies of subchains  can be used for theore t ica l  analysis  
of the processes of  deformat ion ,  o r ien ta t ion  and 
crys ta l l iza t ion of  polymers .  The m e t h o d  p roposed  is 
appl icab le  for calculat ing the free energy of  po lymer  
chains whose conformat ions  are consis tent  with the 
d i a m o n d - t y p e  or  b.c.c, lat t ice (higher po lyoxya lkanes ,  

vinyl polymers ,  etc.). 
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